QWQ AI

QWQ AI

Support Models

Qwen: Qwen3 Coder (free)

qwen/qwen3-coder:free

Qwen3-Coder-480B-A35B-Instruct is a Mixture-of-Experts (MoE) code generation model developed by the Qwen team. It is optimized for agentic coding tasks such as function calling, tool use, and long-context reasoning over repositories. The model features 480 billion total parameters, with 35 billion active per forward pass (8 out of 160 experts). Pricing for the Alibaba endpoints varies by context length. Once a request is greater than 128k input tokens, the higher pricing is used.

Try Model

Qwen: Qwen3 235B A22B 2507 (free)

qwen/qwen3-235b-a22b-07-25:free

Qwen3-235B-A22B-Instruct-2507 is a multilingual, instruction-tuned mixture-of-experts language model based on the Qwen3-235B architecture, with 22B active parameters per forward pass. It is optimized for general-purpose text generation, including instruction following, logical reasoning, math, code, and tool usage. The model supports a native 262K context length and does not implement "thinking mode" (<think> blocks). Compared to its base variant, this version delivers significant gains in knowledge coverage, long-context reasoning, coding benchmarks, and alignment with open-ended tasks. It is particularly strong on multilingual understanding, math reasoning (e.g., AIME, HMMT), and alignment evaluations like Arena-Hard and WritingBench.

Try Model

MoonshotAI: Kimi K2 (free)

moonshotai/kimi-k2:free

Kimi K2 Instruct is a large-scale Mixture-of-Experts (MoE) language model developed by Moonshot AI, featuring 1 trillion total parameters with 32 billion active per forward pass. It is optimized for agentic capabilities, including advanced tool use, reasoning, and code synthesis. Kimi K2 excels across a broad range of benchmarks, particularly in coding (LiveCodeBench, SWE-bench), reasoning (ZebraLogic, GPQA), and tool-use (Tau2, AceBench) tasks. It supports long-context inference up to 128K tokens and is designed with a novel training stack that includes the MuonClip optimizer for stable large-scale MoE training.

Try Model

Venice: Uncensored (free)

cognitivecomputations/dolphin-mistral-24b-venice-edition:free

Venice Uncensored Dolphin Mistral 24B Venice Edition is a fine-tuned variant of Mistral-Small-24B-Instruct-2501, developed by dphn.ai in collaboration with Venice.ai. This model is designed as an “uncensored” instruct-tuned LLM, preserving user control over alignment, system prompts, and behavior. Intended for advanced and unrestricted use cases, Venice Uncensored emphasizes steerability and transparent behavior, removing default safety and alignment layers typically found in mainstream assistant models.

Try Model

Google: Gemma 3n 2B (free)

google/gemma-3n-e2b-it:free

Gemma 3n E2B IT is a multimodal, instruction-tuned model developed by Google DeepMind, designed to operate efficiently at an effective parameter size of 2B while leveraging a 6B architecture. Based on the MatFormer architecture, it supports nested submodels and modular composition via the Mix-and-Match framework. Gemma 3n models are optimized for low-resource deployment, offering 32K context length and strong multilingual and reasoning performance across common benchmarks. This variant is trained on a diverse corpus including code, math, web, and multimodal data.

Try Model

Tencent: Hunyuan A13B Instruct (free)

tencent/hunyuan-a13b-instruct:free

Hunyuan-A13B is a 13B active parameter Mixture-of-Experts (MoE) language model developed by Tencent, with a total parameter count of 80B and support for reasoning via Chain-of-Thought. It offers competitive benchmark performance across mathematics, science, coding, and multi-turn reasoning tasks, while maintaining high inference efficiency via Grouped Query Attention (GQA) and quantization support (FP8, GPTQ, etc.).

Try Model

TNG: DeepSeek R1T2 Chimera (free)

tngtech/deepseek-r1t2-chimera:free

DeepSeek-TNG-R1T2-Chimera is the second-generation Chimera model from TNG Tech. It is a 671 B-parameter mixture-of-experts text-generation model assembled from DeepSeek-AI’s R1-0528, R1, and V3-0324 checkpoints with an Assembly-of-Experts merge. The tri-parent design yields strong reasoning performance while running roughly 20 % faster than the original R1 and more than 2× faster than R1-0528 under vLLM, giving a favorable cost-to-intelligence trade-off. The checkpoint supports contexts up to 60 k tokens in standard use (tested to ~130 k) and maintains consistent <think> token behaviour, making it suitable for long-context analysis, dialogue and other open-ended generation tasks.

Try Model

Kimi Dev 72b (free)

moonshotai/kimi-dev-72b:free

Kimi-Dev-72B is an open-source large language model fine-tuned for software engineering and issue resolution tasks. Based on Qwen2.5-72B, it is optimized using large-scale reinforcement learning that applies code patches in real repositories and validates them via full test suite execution—rewarding only correct, robust completions. The model achieves 60.4% on SWE-bench Verified, setting a new benchmark among open-source models for software bug fixing and code reasoning.

Try Model

DeepSeek: Deepseek R1 0528 Qwen3 8B (free)

deepseek/deepseek-r1-0528-qwen3-8b:free

DeepSeek-R1-0528 is a lightly upgraded release of DeepSeek R1 that taps more compute and smarter post-training tricks, pushing its reasoning and inference to the brink of flagship models like O3 and Gemini 2.5 Pro. It now tops math, programming, and logic leaderboards, showcasing a step-change in depth-of-thought. The distilled variant, DeepSeek-R1-0528-Qwen3-8B, transfers this chain-of-thought into an 8 B-parameter form, beating standard Qwen3 8B by +10 pp and tying the 235 B “thinking” giant on AIME 2024.

Try Model

DeepSeek: R1 0528 (free)

deepseek/deepseek-r1-0528:free

May 28th update to the [original DeepSeek R1](/deepseek/deepseek-r1) Performance on par with [OpenAI o1](/openai/o1), but open-sourced and with fully open reasoning tokens. It's 671B parameters in size, with 37B active in an inference pass. Fully open-source model.

Try Model

Sarvam AI: Sarvam-M (free)

sarvamai/sarvam-m:free

Sarvam-M is a 24 B-parameter, instruction-tuned derivative of Mistral-Small-3.1-24B-Base-2503, post-trained on English plus eleven major Indic languages (bn, hi, kn, gu, mr, ml, or, pa, ta, te). The model introduces a dual-mode interface: “non-think” for low-latency chat and a optional “think” phase that exposes chain-of-thought tokens for more demanding reasoning, math, and coding tasks. Benchmark reports show solid gains versus similarly sized open models on Indic-language QA, GSM-8K math, and SWE-Bench coding, making Sarvam-M a practical general-purpose choice for multilingual conversational agents as well as analytical workloads that mix English, native Indic scripts, or romanized text.

Try Model

Mistral: Devstral Small 2505 (free)

mistralai/devstral-small-2505:free

Devstral-Small-2505 is a 24B parameter agentic LLM fine-tuned from Mistral-Small-3.1, jointly developed by Mistral AI and All Hands AI for advanced software engineering tasks. It is optimized for codebase exploration, multi-file editing, and integration into coding agents, achieving state-of-the-art results on SWE-Bench Verified (46.8%). Devstral supports a 128k context window and uses a custom Tekken tokenizer. It is text-only, with the vision encoder removed, and is suitable for local deployment on high-end consumer hardware (e.g., RTX 4090, 32GB RAM Macs). Devstral is best used in agentic workflows via the OpenHands scaffold and is compatible with inference frameworks like vLLM, Transformers, and Ollama. It is released under the Apache 2.0 license.

Try Model

Google: Gemma 3n 4B (free)

google/gemma-3n-e4b-it:free

Gemma 3n E4B-it is optimized for efficient execution on mobile and low-resource devices, such as phones, laptops, and tablets. It supports multimodal inputs—including text, visual data, and audio—enabling diverse tasks such as text generation, speech recognition, translation, and image analysis. Leveraging innovations like Per-Layer Embedding (PLE) caching and the MatFormer architecture, Gemma 3n dynamically manages memory usage and computational load by selectively activating model parameters, significantly reducing runtime resource requirements. This model supports a wide linguistic range (trained in over 140 languages) and features a flexible 32K token context window. Gemma 3n can selectively load parameters, optimizing memory and computational efficiency based on the task or device capabilities, making it well-suited for privacy-focused, offline-capable applications and on-device AI solutions. [Read more in the blog post](https://developers.googleblog.com/en/introducing-gemma-3n/)

Try Model

Qwen: Qwen3 4B (free)

qwen/qwen3-4b:free

Qwen3-4B is a 4 billion parameter dense language model from the Qwen3 series, designed to support both general-purpose and reasoning-intensive tasks. It introduces a dual-mode architecture—thinking and non-thinking—allowing dynamic switching between high-precision logical reasoning and efficient dialogue generation. This makes it well-suited for multi-turn chat, instruction following, and complex agent workflows.

Try Model

Qwen: Qwen3 30B A3B (free)

qwen/qwen3-30b-a3b:free

Qwen3, the latest generation in the Qwen large language model series, features both dense and mixture-of-experts (MoE) architectures to excel in reasoning, multilingual support, and advanced agent tasks. Its unique ability to switch seamlessly between a thinking mode for complex reasoning and a non-thinking mode for efficient dialogue ensures versatile, high-quality performance. Significantly outperforming prior models like QwQ and Qwen2.5, Qwen3 delivers superior mathematics, coding, commonsense reasoning, creative writing, and interactive dialogue capabilities. The Qwen3-30B-A3B variant includes 30.5 billion parameters (3.3 billion activated), 48 layers, 128 experts (8 activated per task), and supports up to 131K token contexts with YaRN, setting a new standard among open-source models.

Try Model

Qwen: Qwen3 8B (free)

qwen/qwen3-8b:free

Qwen3-8B is a dense 8.2B parameter causal language model from the Qwen3 series, designed for both reasoning-heavy tasks and efficient dialogue. It supports seamless switching between "thinking" mode for math, coding, and logical inference, and "non-thinking" mode for general conversation. The model is fine-tuned for instruction-following, agent integration, creative writing, and multilingual use across 100+ languages and dialects. It natively supports a 32K token context window and can extend to 131K tokens with YaRN scaling.

Try Model

Qwen: Qwen3 14B (free)

qwen/qwen3-14b:free

Qwen3-14B is a dense 14.8B parameter causal language model from the Qwen3 series, designed for both complex reasoning and efficient dialogue. It supports seamless switching between a "thinking" mode for tasks like math, programming, and logical inference, and a "non-thinking" mode for general-purpose conversation. The model is fine-tuned for instruction-following, agent tool use, creative writing, and multilingual tasks across 100+ languages and dialects. It natively handles 32K token contexts and can extend to 131K tokens using YaRN-based scaling.

Try Model

Qwen: Qwen3 235B A22B (free)

qwen/qwen3-235b-a22b:free

Qwen3-235B-A22B is a 235B parameter mixture-of-experts (MoE) model developed by Qwen, activating 22B parameters per forward pass. It supports seamless switching between a "thinking" mode for complex reasoning, math, and code tasks, and a "non-thinking" mode for general conversational efficiency. The model demonstrates strong reasoning ability, multilingual support (100+ languages and dialects), advanced instruction-following, and agent tool-calling capabilities. It natively handles a 32K token context window and extends up to 131K tokens using YaRN-based scaling.

Try Model

TNG: DeepSeek R1T Chimera (free)

tngtech/deepseek-r1t-chimera:free

DeepSeek-R1T-Chimera is created by merging DeepSeek-R1 and DeepSeek-V3 (0324), combining the reasoning capabilities of R1 with the token efficiency improvements of V3. It is based on a DeepSeek-MoE Transformer architecture and is optimized for general text generation tasks. The model merges pretrained weights from both source models to balance performance across reasoning, efficiency, and instruction-following tasks. It is released under the MIT license and intended for research and commercial use.

Try Model

Microsoft: MAI DS R1 (free)

microsoft/mai-ds-r1:free

MAI-DS-R1 is a post-trained variant of DeepSeek-R1 developed by the Microsoft AI team to improve the model’s responsiveness on previously blocked topics while enhancing its safety profile. Built on top of DeepSeek-R1’s reasoning foundation, it integrates 110k examples from the Tulu-3 SFT dataset and 350k internally curated multilingual safety-alignment samples. The model retains strong reasoning, coding, and problem-solving capabilities, while unblocking a wide range of prompts previously restricted in R1. MAI-DS-R1 demonstrates improved performance on harm mitigation benchmarks and maintains competitive results across general reasoning tasks. It surpasses R1-1776 in satisfaction metrics for blocked queries and reduces leakage in harmful content categories. The model is based on a transformer MoE architecture and is suitable for general-purpose use cases, excluding high-stakes domains such as legal, medical, or autonomous systems.

Try Model

THUDM: GLM Z1 32B (free)

thudm/glm-z1-32b:free

GLM-Z1-32B-0414 is an enhanced reasoning variant of GLM-4-32B, built for deep mathematical, logical, and code-oriented problem solving. It applies extended reinforcement learning—both task-specific and general pairwise preference-based—to improve performance on complex multi-step tasks. Compared to the base GLM-4-32B model, Z1 significantly boosts capabilities in structured reasoning and formal domains. The model supports enforced “thinking” steps via prompt engineering and offers improved coherence for long-form outputs. It’s optimized for use in agentic workflows, and includes support for long context (via YaRN), JSON tool calling, and fine-grained sampling configuration for stable inference. Ideal for use cases requiring deliberate, multi-step reasoning or formal derivations.

Try Model

THUDM: GLM 4 32B (free)

thudm/glm-4-32b:free

GLM-4-32B-0414 is a 32B bilingual (Chinese-English) open-weight language model optimized for code generation, function calling, and agent-style tasks. Pretrained on 15T of high-quality and reasoning-heavy data, it was further refined using human preference alignment, rejection sampling, and reinforcement learning. The model excels in complex reasoning, artifact generation, and structured output tasks, achieving performance comparable to GPT-4o and DeepSeek-V3-0324 across several benchmarks.

Try Model

Shisa AI: Shisa V2 Llama 3.3 70B (free)

shisa-ai/shisa-v2-llama3.3-70b:free

Shisa V2 Llama 3.3 70B is a bilingual Japanese-English chat model fine-tuned by Shisa.AI on Meta’s Llama-3.3-70B-Instruct base. It prioritizes Japanese language performance while retaining strong English capabilities. The model was optimized entirely through post-training, using a refined mix of supervised fine-tuning (SFT) and DPO datasets including regenerated ShareGPT-style data, translation tasks, roleplaying conversations, and instruction-following prompts. Unlike earlier Shisa releases, this version avoids tokenizer modifications or extended pretraining. Shisa V2 70B achieves leading Japanese task performance across a wide range of custom and public benchmarks, including JA MT Bench, ELYZA 100, and Rakuda. It supports a 128K token context length and integrates smoothly with inference frameworks like vLLM and SGLang. While it inherits safety characteristics from its base model, no additional alignment was applied. The model is intended for high-performance bilingual chat, instruction following, and translation tasks across JA/EN.

Try Model

ArliAI: QwQ 32B RpR v1 (free)

arliai/qwq-32b-arliai-rpr-v1:free

QwQ-32B-ArliAI-RpR-v1 is a 32B parameter model fine-tuned from Qwen/QwQ-32B using a curated creative writing and roleplay dataset originally developed for the RPMax series. It is designed to maintain coherence and reasoning across long multi-turn conversations by introducing explicit reasoning steps per dialogue turn, generated and refined using the base model itself. The model was trained using RS-QLORA+ on 8K sequence lengths and supports up to 128K context windows (with practical performance around 32K). It is optimized for creative roleplay and dialogue generation, with an emphasis on minimizing cross-context repetition while preserving stylistic diversity.

Try Model

Agentica: Deepcoder 14B Preview (free)

agentica-org/deepcoder-14b-preview:free

DeepCoder-14B-Preview is a 14B parameter code generation model fine-tuned from DeepSeek-R1-Distill-Qwen-14B using reinforcement learning with GRPO+ and iterative context lengthening. It is optimized for long-context program synthesis and achieves strong performance across coding benchmarks, including 60.6% on LiveCodeBench v5, competitive with models like o3-Mini

Try Model

NVIDIA: Llama 3.1 Nemotron Ultra 253B v1 (free)

nvidia/llama-3.1-nemotron-ultra-253b-v1:free

Llama-3.1-Nemotron-Ultra-253B-v1 is a large language model (LLM) optimized for advanced reasoning, human-interactive chat, retrieval-augmented generation (RAG), and tool-calling tasks. Derived from Meta’s Llama-3.1-405B-Instruct, it has been significantly customized using Neural Architecture Search (NAS), resulting in enhanced efficiency, reduced memory usage, and improved inference latency. The model supports a context length of up to 128K tokens and can operate efficiently on an 8x NVIDIA H100 node. Note: you must include `detailed thinking on` in the system prompt to enable reasoning. Please see [Usage Recommendations](https://huggingface.co/nvidia/Llama-3_1-Nemotron-Ultra-253B-v1#quick-start-and-usage-recommendations) for more.

Try Model

DeepSeek: DeepSeek V3 0324 (free)

deepseek/deepseek-chat-v3-0324:free

DeepSeek V3, a 685B-parameter, mixture-of-experts model, is the latest iteration of the flagship chat model family from the DeepSeek team. It succeeds the [DeepSeek V3](/deepseek/deepseek-chat-v3) model and performs really well on a variety of tasks.

Try Model

Qrwkv 72B (free)

featherless/qwerky-72b:free

Qrwkv-72B is a linear-attention RWKV variant of the Qwen 2.5 72B model, optimized to significantly reduce computational cost at scale. Leveraging linear attention, it achieves substantial inference speedups (>1000x) while retaining competitive accuracy on common benchmarks like ARC, HellaSwag, Lambada, and MMLU. It inherits knowledge and language support from Qwen 2.5, supporting approximately 30 languages, making it suitable for efficient inference in large-context applications.

Try Model

Reka: Flash 3 (free)

rekaai/reka-flash-3:free

Reka Flash 3 is a general-purpose, instruction-tuned large language model with 21 billion parameters, developed by Reka. It excels at general chat, coding tasks, instruction-following, and function calling. Featuring a 32K context length and optimized through reinforcement learning (RLOO), it provides competitive performance comparable to proprietary models within a smaller parameter footprint. Ideal for low-latency, local, or on-device deployments, Reka Flash 3 is compact, supports efficient quantization (down to 11GB at 4-bit precision), and employs explicit reasoning tags ("<reasoning>") to indicate its internal thought process. Reka Flash 3 is primarily an English model with limited multilingual understanding capabilities. The model weights are released under the Apache 2.0 license.

Try Model

Qwen: QwQ 32B (free)

qwen/qwq-32b:free

QwQ is the reasoning model of the Qwen series. Compared with conventional instruction-tuned models, QwQ, which is capable of thinking and reasoning, can achieve significantly enhanced performance in downstream tasks, especially hard problems. QwQ-32B is the medium-sized reasoning model, which is capable of achieving competitive performance against state-of-the-art reasoning models, e.g., DeepSeek-R1, o1-mini.

Try Model

Nous: DeepHermes 3 Llama 3 8B Preview (free)

nousresearch/deephermes-3-llama-3-8b-preview:free

DeepHermes 3 Preview is the latest version of our flagship Hermes series of LLMs by Nous Research, and one of the first models in the world to unify Reasoning (long chains of thought that improve answer accuracy) and normal LLM response modes into one model. We have also improved LLM annotation, judgement, and function calling. DeepHermes 3 Preview is one of the first LLM models to unify both "intuitive", traditional mode responses and long chain of thought reasoning responses into a single model, toggled by a system prompt.

Try Model

Dolphin3.0 R1 Mistral 24B (free)

cognitivecomputations/dolphin3.0-r1-mistral-24b:free

Dolphin 3.0 R1 is the next generation of the Dolphin series of instruct-tuned models. Designed to be the ultimate general purpose local model, enabling coding, math, agentic, function calling, and general use cases. The R1 version has been trained for 3 epochs to reason using 800k reasoning traces from the Dolphin-R1 dataset. Dolphin aims to be a general purpose reasoning instruct model, similar to the models behind ChatGPT, Claude, Gemini. Part of the [Dolphin 3.0 Collection](https://huggingface.co/collections/cognitivecomputations/dolphin-30-677ab47f73d7ff66743979a3) Curated and trained by [Eric Hartford](https://huggingface.co/ehartford), [Ben Gitter](https://huggingface.co/bigstorm), [BlouseJury](https://huggingface.co/BlouseJury) and [Cognitive Computations](https://huggingface.co/cognitivecomputations)

Try Model

Dolphin3.0 Mistral 24B (free)

cognitivecomputations/dolphin3.0-mistral-24b:free

Dolphin 3.0 is the next generation of the Dolphin series of instruct-tuned models. Designed to be the ultimate general purpose local model, enabling coding, math, agentic, function calling, and general use cases. Dolphin aims to be a general purpose instruct model, similar to the models behind ChatGPT, Claude, Gemini. Part of the [Dolphin 3.0 Collection](https://huggingface.co/collections/cognitivecomputations/dolphin-30-677ab47f73d7ff66743979a3) Curated and trained by [Eric Hartford](https://huggingface.co/ehartford), [Ben Gitter](https://huggingface.co/bigstorm), [BlouseJury](https://huggingface.co/BlouseJury) and [Cognitive Computations](https://huggingface.co/cognitivecomputations)

Try Model

Mistral: Mistral Small 3 (free)

mistralai/mistral-small-24b-instruct-2501:free

Mistral Small 3 is a 24B-parameter language model optimized for low-latency performance across common AI tasks. Released under the Apache 2.0 license, it features both pre-trained and instruction-tuned versions designed for efficient local deployment. The model achieves 81% accuracy on the MMLU benchmark and performs competitively with larger models like Llama 3.3 70B and Qwen 32B, while operating at three times the speed on equivalent hardware. [Read the blog post about the model here.](https://mistral.ai/news/mistral-small-3/)

Try Model

DeepSeek: R1 Distill Qwen 14B (free)

deepseek/deepseek-r1-distill-qwen-14b:free

DeepSeek R1 Distill Qwen 14B is a distilled large language model based on [Qwen 2.5 14B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B), using outputs from [DeepSeek R1](/deepseek/deepseek-r1). It outperforms OpenAI's o1-mini across various benchmarks, achieving new state-of-the-art results for dense models. Other benchmark results include: - AIME 2024 pass@1: 69.7 - MATH-500 pass@1: 93.9 - CodeForces Rating: 1481 The model leverages fine-tuning from DeepSeek R1's outputs, enabling competitive performance comparable to larger frontier models.

Try Model

DeepSeek: R1 Distill Llama 70B (free)

deepseek/deepseek-r1-distill-llama-70b:free

DeepSeek R1 Distill Llama 70B is a distilled large language model based on [Llama-3.3-70B-Instruct](/meta-llama/llama-3.3-70b-instruct), using outputs from [DeepSeek R1](/deepseek/deepseek-r1). The model combines advanced distillation techniques to achieve high performance across multiple benchmarks, including: - AIME 2024 pass@1: 70.0 - MATH-500 pass@1: 94.5 - CodeForces Rating: 1633 The model leverages fine-tuning from DeepSeek R1's outputs, enabling competitive performance comparable to larger frontier models.

Try Model

DeepSeek: R1 (free)

deepseek/deepseek-r1:free

DeepSeek R1 is here: Performance on par with [OpenAI o1](/openai/o1), but open-sourced and with fully open reasoning tokens. It's 671B parameters in size, with 37B active in an inference pass. Fully open-source model & [technical report](https://api-docs.deepseek.com/news/news250120). MIT licensed: Distill & commercialize freely!

Try Model

Meta: Llama 3.3 70B Instruct (free)

meta-llama/llama-3.3-70b-instruct:free

The Meta Llama 3.3 multilingual large language model (LLM) is a pretrained and instruction tuned generative model in 70B (text in/text out). The Llama 3.3 instruction tuned text only model is optimized for multilingual dialogue use cases and outperforms many of the available open source and closed chat models on common industry benchmarks. Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai. [Model Card](https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/MODEL_CARD.md)

Try Model

Qwen2.5 Coder 32B Instruct (free)

qwen/qwen-2.5-coder-32b-instruct:free

Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (formerly known as CodeQwen). Qwen2.5-Coder brings the following improvements upon CodeQwen1.5: - Significantly improvements in **code generation**, **code reasoning** and **code fixing**. - A more comprehensive foundation for real-world applications such as **Code Agents**. Not only enhancing coding capabilities but also maintaining its strengths in mathematics and general competencies. To read more about its evaluation results, check out [Qwen 2.5 Coder's blog](https://qwenlm.github.io/blog/qwen2.5-coder-family/).

Try Model

Meta: Llama 3.2 3B Instruct (free)

meta-llama/llama-3.2-3b-instruct:free

Llama 3.2 3B is a 3-billion-parameter multilingual large language model, optimized for advanced natural language processing tasks like dialogue generation, reasoning, and summarization. Designed with the latest transformer architecture, it supports eight languages, including English, Spanish, and Hindi, and is adaptable for additional languages. Trained on 9 trillion tokens, the Llama 3.2 3B model excels in instruction-following, complex reasoning, and tool use. Its balanced performance makes it ideal for applications needing accuracy and efficiency in text generation across multilingual settings. Click here for the [original model card](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/MODEL_CARD.md). Usage of this model is subject to [Meta's Acceptable Use Policy](https://www.llama.com/llama3/use-policy/).

Try Model

Qwen2.5 72B Instruct (free)

qwen/qwen-2.5-72b-instruct:free

Qwen2.5 72B is the latest series of Qwen large language models. Qwen2.5 brings the following improvements upon Qwen2: - Significantly more knowledge and has greatly improved capabilities in coding and mathematics, thanks to our specialized expert models in these domains. - Significant improvements in instruction following, generating long texts (over 8K tokens), understanding structured data (e.g, tables), and generating structured outputs especially JSON. More resilient to the diversity of system prompts, enhancing role-play implementation and condition-setting for chatbots. - Long-context Support up to 128K tokens and can generate up to 8K tokens. - Multilingual support for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more. Usage of this model is subject to [Tongyi Qianwen LICENSE AGREEMENT](https://huggingface.co/Qwen/Qwen1.5-110B-Chat/blob/main/LICENSE).

Try Model

Meta: Llama 3.1 405B Instruct (free)

meta-llama/llama-3.1-405b-instruct:free

The highly anticipated 400B class of Llama3 is here! Clocking in at 128k context with impressive eval scores, the Meta AI team continues to push the frontier of open-source LLMs. Meta's latest class of model (Llama 3.1) launched with a variety of sizes & flavors. This 405B instruct-tuned version is optimized for high quality dialogue usecases. It has demonstrated strong performance compared to leading closed-source models including GPT-4o and Claude 3.5 Sonnet in evaluations. To read more about the model release, [click here](https://ai.meta.com/blog/meta-llama-3-1/). Usage of this model is subject to [Meta's Acceptable Use Policy](https://llama.meta.com/llama3/use-policy/).

Try Model

Mistral: Mistral Nemo (free)

mistralai/mistral-nemo:free

A 12B parameter model with a 128k token context length built by Mistral in collaboration with NVIDIA. The model is multilingual, supporting English, French, German, Spanish, Italian, Portuguese, Chinese, Japanese, Korean, Arabic, and Hindi. It supports function calling and is released under the Apache 2.0 license.

Try Model

Google: Gemma 2 9B (free)

google/gemma-2-9b-it:free

Gemma 2 9B by Google is an advanced, open-source language model that sets a new standard for efficiency and performance in its size class. Designed for a wide variety of tasks, it empowers developers and researchers to build innovative applications, while maintaining accessibility, safety, and cost-effectiveness. See the [launch announcement](https://blog.google/technology/developers/google-gemma-2/) for more details. Usage of Gemma is subject to Google's [Gemma Terms of Use](https://ai.google.dev/gemma/terms).

Try Model

Mistral: Mistral 7B Instruct (free)

mistralai/mistral-7b-instruct:free

A high-performing, industry-standard 7.3B parameter model, with optimizations for speed and context length. *Mistral 7B Instruct has multiple version variants, and this is intended to be the latest version.*

Try Model